Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Water flow for more efficient aquaponic systems

Ivaylo Nedyalkov, researcher at the University of New Hampshire whose team is studying ways to improve water flow for more efficient aquaponic systems, presented his team's research at the American Physical Society's Division of Fluid Dynamics 71st Annual Meeting, which took place Nov. 18-20 at the Georgia World Congress Center in Atlanta, Georgia. The team also includes Todd Guerdat, assistant professor of agricultural engineering who is leading the biological aspect of the research, and researchers Hannah Thomas and Danielle Coombs.

Nedyalkov focused on a study in which he investigated the water flow in a 2-meter-by-2-meter square (6.5 square foot) fish tank with rounded corners and two different inlet configurations. The first configuration included inlets at all four corners of the tank. The second one included inlets at two corners only.

A Vectrino acoustic Doppler velocimeter was used to map the flow at three different depths. Detailed repeatability and uncertainty analysis were performed to ensure the validity of the data.

"Initial results suggest that the configuration with fewer inlets and lower flow rate resulted in similar velocity profiles compared to those obtained with the configuration with more inlets and higher flow rate," Nedyalkov said. "Our research suggests that aquaponic systems can offer the same benefits using lower power consumption and thus decrease the operational cost of these systems."

Read more at ScienceDaily

Publication date: