Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Can the decline in vegetables' nutrient content be reversed?

In 2004, Donald Davis and fellow scientists at the University of Texas made an alarming discovery: 43 foods, mostly vegetables, showed a marked decrease in nutrients between the mid and late 20th century. According to that research, the calcium in green beans dropped from 65 to 37mg. Vitamin A levels plummeted by almost half in asparagus. Broccoli stalks had less iron.

Nutrient loss has continued since that study. More recent research has documented the declining nutrient value in some staple crops due to rising atmospheric carbon dioxide (CO2) levels; a 2018 study that tested rice found that higher CO2 levels reduced its protein, iron and zinc content.

While the climate crisis has only accelerated concerns about crops' nutritional value, prompting the emergence of a process called biofortification as a strategy to replenish lost nutrients or those that foods never had in the first place.

Biofortification encompasses multiple technologies. One involves genetically modifying a crop to increase its nutritional contents, which allows for the rapid introduction of new traits. Another, agronomic biofortification, utilizes nutrient-rich fertilizers or soil amendments to concentrate particular minerals in plants. Lastly, selective plant breeding can produce new varieties, though it can take a decade or more to yield a single variety.

Read more at theguardian.com

Publication date: