Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Optimizing light use efficiency and quality of indoor organically grown leafies with different lighting strategies

Vertical farming is experiencing significant growth, and the optimization of artificial lighting is essential for enhancing the sustainability of this growing system. Therefore, the aim of this study was to examine how light segmentation, the incorporation of a low-intensity lighting phase known as the light compensation point (LCP) instead of the traditional dark phase, and variations in the light spectrum impact the agricultural outcomes of organically cultivated leafy greens. In controlled growth chamber environments, a variety of leafy plant species (Spinacia oleracea L., Ocimum basilicum, Beta vulgaris L., Lactuca sativa L. cv. ‘Garrison’ and ‘Blade,’ Brassica rapa cv. ‘Japonica’ and ‘Chinensis,’ Brassica juncea cv. ‘Scarlet Frills’ and ‘Wasabina,’ Eruca sativa, and Perilla frutescens L.) were subjected to four light treatments with varying intensities and durations of lighting, while in a second experiment, five different spectral growing conditions were compared.

Irrespective of the plant species, shortening the length of the diel cycle by extending the cumulative daily lighting to 20–24 h per day (5L/1N [5 h at 261 µmol m−2 s−1 + 1 h darkness for a total of 20 h of light per day] and 5L/1LCP [5 h at 256 µmol m−2 s−1 + 1 h LCP at 20 µmol m−2 s−1 for a total of 24 h of light per day]) led to an average increase of +12% in height, fresh weight (+16%), dry weight (+23%), and specific leaf weight (+11%), compared to the control plants (18L/6N; 18 h at 289 µmol m−2 s−1 + 6 h darkness) and 6L/6LCP plants (6 h at 418 µmol m−2 s−1 + 6 h LCP at 20 µmol m−2 s−1 for a total of 24 h of light per day) during the first harvest.

This also resulted in better light utilization, expressed as increased fresh (+16%) and dry (+24%) biomass per mol of light received. Conversely, the studied light spectral treatments had no effect on the growth parameters of the four selected species. In conclusion, our study showed that reducing light intensity while extending the photoperiod could potentially represent a cost-effective LED strategy for the indoor cultivation of organically or conventionally grown leafy greens.

Boucher, L.; Nguyen, T.-T.-A.; Brégard, A.; Pepin, S.; Dorais, M. Optimizing Light Use Efficiency and Quality of Indoor Organically Grown Leafy Greens by Using Different Lighting Strategies. Agronomy 2023, 13, 2582. https://doi.org/10.3390/agronomy13102582

Read the complete paper here.

Publication date: