Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Detection of tomato gray mold spores based on microfluidic chip enrichment

This study proposed a rapid detection method for spores of Botrytis cinerea in greenhouse based on microfluidic chip enrichment and lens-free diffraction image processing. Microfluidic chip with a regular triangular inner rib structure was designed to achieve the enrichment of Botrytis cinerea spores. In order to obtain the diffraction image of the diseased spores, a lens-less diffraction imaging system was built.

Furthermore, the collected spore diffraction images were processed and counted. The simulation results showed that the collection efficiency of 16 μm particles was 79%, 100%, and 89% at the inlet flow rate of 12, 14 and 16 mL/min, respectively. The experimental verification results were observed under a microscope. The results showed that when the flow rate of the microfluidic chip was 12, 14 and 16 mL/min, the collection efficiency of Botrytis cinerea spores was 70.65%, 87.52% and 77.96%, respectively. The Botrytis cinerea spores collected in the experiment were placed under a microscope for manual counting and compared with the automatic counting results based on diffraction image processing.

A total of 10 sets of experiments were carried out, with an error range of the experiment was 5.13~8.57%, and the average error of the experiment was 6.42%. The Bland–Altman method was used to analyze two methods based on diffraction image processing and manual counting under a microscope. All points are within the 95% consistency interval. Therefore, this study can provide a basis for the research on the real-time monitoring technology of tomato gray mold spores in the greenhouse.

Read the complete research at www.researchgate.net.

Wang, Yafei & Mao, Hanping & Zhang, Xiaodong & Liu, Yong & Du, Xiaoxue. (2021). A Rapid Detection Method for Tomato Gray Mold Spores in Greenhouse Based on Microfluidic Chip Enrichment and Lens-Less Diffraction Image Processing. Foods. 10. 3011. 10.3390/foods10123011. 

Publication date: