This study proposed a rapid detection method for spores of Botrytis cinerea in greenhouse based on microfluidic chip enrichment and lens-free diffraction image processing. Microfluidic chip with a regular triangular inner rib structure was designed to achieve the enrichment of Botrytis cinerea spores. In order to obtain the diffraction image of the diseased spores, a lens-less diffraction imaging system was built.

Furthermore, the collected spore diffraction images were processed and counted. The simulation results showed that the collection efficiency of 16 μm particles was 79%, 100%, and 89% at the inlet flow rate of 12, 14 and 16 mL/min, respectively. The experimental verification results were observed under a microscope. The results showed that when the flow rate of the microfluidic chip was 12, 14 and 16 mL/min, the collection efficiency of Botrytis cinerea spores was 70.65%, 87.52% and 77.96%, respectively. The Botrytis cinerea spores collected in the experiment were placed under a microscope for manual counting and compared with the automatic counting results based on diffraction image processing.

A total of 10 sets of experiments were carried out, with an error range of the experiment was 5.13~8.57%, and the average error of the experiment was 6.42%. The Bland–Altman method was used to analyze two methods based on diffraction image processing and manual counting under a microscope. All points are within the 95% consistency interval. Therefore, this study can provide a basis for the research on the real-time monitoring technology of tomato gray mold spores in the greenhouse.

Read the complete research at

Wang, Yafei & Mao, Hanping & Zhang, Xiaodong & Liu, Yong & Du, Xiaoxue. (2021). A Rapid Detection Method for Tomato Gray Mold Spores in Greenhouse Based on Microfluidic Chip Enrichment and Lens-Less Diffraction Image Processing. Foods. 10. 3011. 10.3390/foods10123011.