Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Improving water use efficiency in cherry tomato cultivation

The spatial distribution of root systems in the soil has major impacts on soil water and nutrient uptake and ultimately crop yield. New research aimed to optimize the root distribution patterns, growth, and yield of cherry tomato by using a number of emitters per plant. A randomized complete block design technique was adopted by selecting eight treatments with two irrigation regimes and four levels of emitters under greenhouse conditions.

The experiment results showed that the root distribution extended over the entire pot horizontally and shifted vertically upwards with increased emitter density. The deficit irrigation resulted in reduced horizontal root extension and shifted the root concentrations deeper. Notably, tomato plants with two emitters per plant and deficit irrigation treatment showed an optimal root distribution compared to the other treatments, showing wider and deeper dispersion measurements and higher root length density and root weight density through the soil with the highest benefit–cost ratio (1.3 and 1.1 cm cm−3, 89.8 and 77.7 µg cm−3, and 4.20 and 4.24 during spring–summer and fall-winter cropping seasons, respectively).

The increases in yield and water use efficiency (due to increased yield) were 19% and 18.8%, respectively, for spring–summer cropping season and 11.5% and 11.8%, respectively, for fall–winter cropping season, with two emitters per plant over a single emitter. The decrease in yield was 5.3% and 4%, and increase in water use efficiency (due to deficit irrigation) was 26.2% and 27.9% for spring-summer and fall-winter cropping seasons, respectively, by deficit irrigation over full irrigation. Moreover, it was observed that two, three, and four emitters per plant had no significant effects on yield and water use efficiency.

Thus, it was concluded that two emitters per plant with deficit irrigation is optimum under greenhouse conditions for the cultivation of potted cherry tomatoes, considering the root morphology, root distribution, dry matter production, yield, water use efficiency, and economic analysis.

Access the full study at Agronomy.

Publication date: