Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Protein restricts sap uptake by aphids

Researchers at Umeå University and Wageningen University have discovered how plants can defend themselves against aphids. They recorded aphid behavior on video, and identified a plant protein that keeps aphids from feeding. The results have been published in The Plant Cell.

During her PhD, Karen Kloth studied aphid feeding behavior on different varieties of the model plant Arabidopsis thaliana, collected from 350 different locations on the northern hemisphere. Together with other Dutch researchers she built a video-tracking platform to measure how often aphids penetrated the plants and were feeding.

On resistant plants, the aphids were feeding less from the sugar-rich sap than on susceptible plants. This behavior was associated with one specific plant gene, coding for a protein with unknown function. At the Umeå Plant Science Centre, UPSC, Umeå University, the researchers thereafter studied where in the plant the protein was located. They transformed plants with a fluorescent version of the protein, and found that the protein coats the inside of the vessels where sugar-rich sap is transported.

Further experiments showed that aphids had a slower sap ingestion and produced fewer offspring on resistant plants. The researchers think that the protein might occlude the narrow food canal of the aphid. At high temperature, plants produced more of the protein and were more resistant to aphids. In addition, plants with the protein had another advantage; they were able to produce more seeds during heat stress.

Read more at phys.org
Publication date: