Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Creating a feasible approach to growing in multi-span greenhouses

Greenhouse automation has become increasingly important in facility agriculture, yet multi-span glass greenhouses pose both scientific and practical challenges for autonomous mobile robots.

Scientifically, solid-state LiDAR is vulnerable to glass-induced reflections, sparse geometric features, and narrow vertical fields of view, all of which undermine Simultaneous Localization and Mapping (SLAM)-based localization and mapping. Practically, large-scale crop production demands accurate inter-row navigation and efficient rail switching to reduce labor intensity and ensure stable operations. To address these challenges, this study presents an integrated localization-navigation framework for mobile robots in multi-span glass greenhouses. In the intralogistics area, the LiDAR Inertial Odometry-Simultaneous Localization and Mapping (LIO-SAM) pipeline was enhanced with reflection filtering, adaptive feature-extraction thresholds, and improved loop-closure detection, generating high-fidelity three-dimensional maps that were converted into two-dimensional occupancy grids for A-Star global path planning and Dynamic Window Approach (DWA) local control. In the cultivation area, where rails intersect with internal corridors, YOLOv8n-based rail-center detection combined with a pure-pursuit controller established a vision-servo framework for lateral rail switching and inter-row navigation. Field experiments demonstrated that the optimized mapping reduced the mean relative error by 15%. At a navigation speed of 0.2 m/s, the robot achieved a mean lateral deviation of 4.12 cm and a heading offset of 1.79°, while the vision-servo rail-switching system improved efficiency by 25.2%.

These findings confirm the proposed framework's accuracy, robustness, and practical applicability, providing strong support for intelligent facility-agriculture operations.

Ni, C.; Cai, J.; Wang, P. A LiDAR SLAM and Visual-Servoing Fusion Approach to Inter-Zone Localization and Navigation in Multi-Span Greenhouses. Agronomy 2025, 15, 2380. https://doi.org/10.3390/agronomy15102380

Source: MDPI

Related Articles → See More