Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber
GTRI

The future of peach harvesting

The Georgia Tech Research Institute (GTRI) has developed an intelligent robot that is designed to handle the human-based tasks of thinning and pruning peach trees, which could result in significant cost savings for peach farms in Georgia.   

"Most folks are familiar with the harvesting of fruit and picking it up at the market," said Ai-Ping Hu, a GTRI senior research engineer who is leading the robot design project. "But there's actually a lot more stuff that gets done before that point in the cultivation cycle."

By using a LIDAR remote sensing system – which determines distances by targeting an object with a laser and measuring the amount of time it takes for the laser beam to reflect back – and a highly-specialized GPS technology that measures locations as specific as a fraction of an inch, the robot is able to self-navigate through peach orchards while steering clear of obstacles. Once at a peach tree, the robot uses an embedded 3D camera to determine which peaches need to be removed, and removes the peaches using a claw-like device, known as an end effector, that is connected to the end of its arm.   

The robot specifically addresses two key components of the peach cultivation cycle: tree pruning and tree thinning. 

But so far, there are no robots on the market that have been able to fully replace humans in the peach cultivation due to peach orchards' unstructured environments, which includes unpredictable weather, uneven terrain, and trees' different shapes and sizes, Hu noted.

"In an orchard, no two trees are ever the same," Hu added. "You could have a sunny day or a really cloudy day – that's going to affect the way the technology on the robot can operate."

"There's no robot in the world right now that can harvest or thin peaches as well as people can," Hu said. "The technology's not quite there yet."

Current efforts to automate the harvesting of peaches and other specialty crops so far have not been as successful as advancements in commodity crop automation, where machines can collect hundreds of acres of the good at a time. Commodity crops include items such as corn, wheat, and soybeans. 

To address these unique issues, GTRI is exploring ways to incorporate artificial intelligence and deep learning training methods to improve the robot's image classification abilities and overall performance. GTRI has also partnered with Dario Chavez, an associate professor in the Department of Horticulture at the University of Georgia Griffin Campus in Griffin, Ga., to further explore the intelligent automation of peach farming.

Gary McMurray, a GTRI principal research engineer and division chief of GTRI's Intelligent Sustainable Technologies Division, said the novel robot stands to transform the fruit cultivation process for many farms that have struggled to grow trees that are strong enough to withstand unpredictable environmental conditions. 

For more information:
Michelle Gowdy
GTRI
[email protected] 
Tel: 404-407-8060
research.gatech.edu

Publication date: