Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Finding best targets to improve crop yield by following CO2 journey inside leaf

A team of scientists have measured the relative importance of the different obstacles that carbon dioxide (CO2) encounters in its voyage from the atmosphere to the interior of plant cells, where it is converted into sugars. This research leading method provides much needed information that will help to increase the yield of important food crops such as cowpea, soybean and cassava.

"Our data highlights promising targets to improve the diffusion of CO2 through the leaf with the aim of boosting crop productivity," says lead author Dr. Tory Clarke, who works at The Australian National University (ANU), as part of the Realizing Increased Photosynthetic Efficiency (RIPE) project, an international research project that aims to improve photosynthesis to equip farmers worldwide with higher-yielding crops.

CO2 moves into the plant cells and is transformed into food during photosynthesis by enzymes located inside the chloroplasts. However, this journey is not a smooth one but rather one full of obstacles and resistances such as solid walls, liquid valleys and tunnels guarded by gate-keeper proteins.

"Our results will help enormously in the creation of more precise leaf and crop models, as we have linked the anatomical structures inside the leaves with important physiological crop aspects, such as the age of the leaf and its position in the canopy, to find out what is influencing CO2 uptake into leaf cells," says Dr. Clarke, from the ARC Centre of Excellence for Translational Photosynthesis (CoETP).

Read the complete article at www.phys.org.

Publication date:

Related Articles → See More