Growing interest and attention to regenerative agriculture practices are driving new research

Increasing populations and changing climate conditions will require both innovative and ancient growing methods to feed the world. Regenerative agriculture, a movement both burgeoning and broad, is underpinned by the public’s growing awareness of how land stewardship and agricultural production contribute to the fate of our planet.

As a land-grant university, the University of Georgia, led by the College of Agricultural and Environmental Sciences, is charged with providing readily available, research-based programs and educational resources to improve the lives of individuals, families, and communities. While research has often driven innovations and changes in agricultural practice, societal change is, in part, driving research into regenerative agriculture.

Kate Cassity-Duffey, an assistant professor of horticulture specializing in organic production, is the lead researcher for the three-year study to develop best practices for transitioning to organic farming.

“Unfortunately, because it does not have a standard definition or regulations attached to a definition, the term can be used abstractly, but to me, regenerative agriculture is part of the fundamentals of what I do with organic and sustainable agriculture,” said Kate Cassity-Duffey, an assistant professor in the CAES Department of Horticulture specializing in organic production.

Refining traditional practices
David Berle is the faculty founder and former director of UGArden, the university’s student-run community farm, which is committed to sustainable practices.

Much like organic practices, which were developed in the late 1800s and early 1900s when producers were starting to look at agriculture as a science, the regenerative farming movement is meant to address the environmental impact of farming, said Berle, a retired associate professor of horticulture.

“We are running out of water, phosphorus, and decent, arable land. If we are going to continue doing what we are doing, we need to figure out how to do it in a way that does not keep depleting our resources but restores and improves the land,” he said. “The dream is to put it all back as we found it, but I’m not sure that is possible without dramatic change. Right now, we are just trying to stop the bleeding and minimize the impact as much as possible.”

Unlike the Organic Foods Production Act of 1990, which Cassity-Duffey noted took “a literal Act of Congress” to create regulations for organic certification, the regenerative agriculture movement is more broadly defined by those who practice it and those whose research involves those practices.

“These practices can be applied to any operation,” she said. “Regenerative agriculture is focusing on closing the loop in terms of nutrients, inputs and reducing carbon emissions, and it is focusing on building soil health, building soil organic matter and accumulating carbon back into the soil.”

One of the primary practices of regenerative agriculture is cover cropping, which has become an essential focus for conventional and organic producers alike.

“Producers know cover cropping can add and scavenge nutrients, build organic matter in the soil, and help with weed control. Regenerative agriculture also involves the addition of manure inputs, with a focus on building nutrients into the soil, so there is less dependence on synthetic fertilizers,” Cassity-Duffey said.

A producer stands on severely eroded farmland during the Dust Bowl, circa 1930s. (Photo courtesy of USDA).

Another critical component of regenerative and sustainable agriculture is reducing tillage in cropping systems. Efforts concentrated on soil and water conservation began in earnest in the U.S. with the establishment of the Soil Conservation Service in 1933 in response to increasing soil erosion and drought that led to the Dust Bowl of the 1930s. In 1994, the organization was renamed the Natural Resources Conservation Service.

“Focusing on conservation and reduced tillage, along with the advent of new technologies, different herbicides, and GMO crops, gave producers the ability to till a lot less to control weeds, which often is why they were tilling,” Cassity-Duffey said.

Taking a holistic approach
Professor Juan Carlos Díaz-Pérez, whose research has involved organic and sustainable production since just after he joined UGA’s Tifton campus in 1998, said regenerative agriculture is part of a “one health” concept encompassing research that connects the health of the environment with its effects on animals, plants, and humans.

For nearly three decades, CAES horticulturist Juan Carlos Díaz-Pérez has been contributing to the field of sustainable vegetable production, focusing on organic production.

“Everything is interconnected, and practices like those used in regenerative agriculture improve the soil, which involves biological, chemical, and physical properties. As we improve soil quality with cover crops, reduced levels of tillage and increased soil microbiota will result in better crops and influence native fauna and human beings as well,” he said. Producers are removing the barriers between sustainable and conventional agriculture by being open to sustainable practices.

“You can be conventional and move toward sustainability. It is a road. You may never be 100%, but you can increase your production’s sustainability,” Díaz-Pérez said. “The challenge is to demonstrate that you can be sustainable both ecologically and financially,” he added. “If we cannot do that, no system is going to work. It is possible, but we have to keep working at it.”

Through his research, Díaz-Pérez has completed studies on combining organic and conventional fertilizers and found that by using a 50-50 ratio of organic fertilizer and chemical fertilizer, producers achieved yields as high as using 100% conventional fertilizers, if not higher in some cases.

“There was no reduction in yield, and there is the long-term potential of having improvement in soil quality,” he said.

Another study showed that both organic and conventional soils under a no-till system for 20 years had inhibitory properties against southern blight, a lethal fungal disease of row crops and vegetables prevalent in tropical and subtropical climates like South Georgia.

“We found that squash plants grown in organic and no-till soil had less disease compared to plants grown in conventional soil,” Díaz-Pérez explained. “I think growers realize that these sustainable practices are helping their crops, so they are doing it in increasing numbers.”


Publication date:

Receive the daily newsletter in your email for free | Click here

Other news in this sector:

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.

Click here for a guide on disabling your adblocker.