Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Urea addition promotes metabolism and utilization of nitrogen in cucumber

Nitrogen (N) forms include ammonium [NH4+-N], nitrate [NO3-N], and urea [CO(NH2)2]. Urea is the most common nitrogen fertilizer in agriculture due to its inexpensive price and high N content. Although the reciprocal influence between NO3-N and NH4+-N is well known, CO(NH2)2 interactions with these inorganic N forms have been poorly studied.

Researchers studied the effects of different nitrogen forms with equal nitrogen on dry matter, yield, enzyme activity, and gene expression levels in cucumber. NO3-N treatment with equal CO(NH2)2 promoted nitrate reduction, urea utilization, and the GS/GOGAT cycle but reduced the nitrate content. UR-2, NR-2, NR-3, NiR, GOGAT-1-1, and GS-4 were upregulated in response to these changes.

NH4+-N treatment with equal CO(NH2)2 promoted nitrogen metabolism and relieved the ammonia toxicity of pure NH4+-N treatment. UR-2, GOGAT-2-2, and GS-4 were upregulated, and GDH-3 was downregulated in response to these changes. Treatment with both NO3-N with added equal CO(NH2)2 and NH4+-N with added equal CO(NH2)2 enhanced the activities of GOGAT, GS, and UR and the amino acid pathway of urea metabolism; manifested higher glutamate, protein, chlorophyll, and nitrogen contents; and improved dry matter weight.

A greater proportion of dry matter was distributed to the fruit, generating significantly higher yields. Therefore, the addition of urea to ammonium or nitrate promoted N metabolism and N utilization in cucumber plants, especially treatments with 50% NO3-N + 50% CO(NH2)2, as the recommended nitrogen form in this study.

Access the full study at Agronomy

Publication date:

Related Articles → See More