Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Tomato and lettuce intercropping in a soilless system

In a new study, an intercrop is studied as a new way of farming in soilless systems within a protected environment. To estimate the efficiency of intercropping in this cultivation system, an experiment was conducted to evaluate the effect of the electrical conductivity (EC) of the nutrient solution (2.0, 2.5, and 3.0 dS·m−1) on lettuce and tomato plants and on the agronomic and economic feasibility of the intercrop compared with monoculture.

The results indicated that a moderate increase in EC from 2.0 to 3.0 dS·m−1 did not exert any important effect on tomato plant production or quality but did cause a decrease in lettuce yield in both the first and second crops. Intercropping was only feasible for lettuce when the tomato and lettuce plants were transplanted on the same day.

The highest tomato (G class) and lettuce yields were achieved at an EC of 2.5 dS·m−1; this condition resulted in the highest intercrop profitability (0.53 €·m−2 more) when compared with tomato monoculture.

Access the full study at HortScience.
Publication date: