Announcements

Job offersmore »





Tweeting Growers

Top 5 - yesterday

  • No news has been published yesterday.

Top 5 - last week

Top 5 - last month

Exchange ratesmore »




Tweaking quantum dots powers-up double-pane solar windows

Using two types of “designer” quantum dots, researchers are creating double-pane solar windows that generate electricity with greater efficiency and create shading and insulation for good measure. It’s all made possible by a new window architecture which utilizes two different layers of low-cost quantum dots tuned to absorb different parts of the solar spectrum.

“Because of the strong performance we can achieve with low-cost, solution-processable materials, these quantum-dot-based double-pane windows and even more complex luminescent solar concentrators offer a new way to bring down the cost of solar electricity,” said lead researcher Victor Klimov. “The approach complements existing photovoltaic technology by adding high-efficiency sunlight collectors to existing solar panels or integrating them as semitransparent windows into a building’s architecture.”

The key to this advance is “solar-spectrum splitting,” which allows one to process separately higher– and lower–energy solar photons. The higher-energy photons can generate a higher photovoltage, which could boost the overall power output. This approach also improves the photocurrent as the dots used in the front layer are virtually “reabsorption free.”



To achieve this, the Los Alamos team incorporates into quantum dots ions of manganese that serve as highly emissive impurities. Light absorbed by the quantum dots activates these impurities. Following activation, the manganese ions emit light at energies below the quantum-dot absorption onset. This trick allows for almost complete elimination of losses due to self-absorption by the quantum dots.

To transform a window into a tandem luminescent sunlight collector, the Los Alamos team deposits a layer of highly emissive manganese-doped quantum dots onto the surface of the front glass pane and a layer of copper indium selenide quantum dots onto the surface of the back pane. The front layer absorbs the blue and ultraviolet portions of the solar spectrum, while the rest of the spectrum is picked up by the bottom layer.

Following absorption, the dot re-emits a photon at a longer wavelength, and then the re-emitted light is guided by total internal reflection to the glass edges of the window. There, solar cells integrated into the window frame collect the light and convert it to electricity.

Source: Los Alamos National Laboratory

Publication date: 1/5/2018

 


 

Other news in this sector:

2/19/2018 PMA A-NZ brings together New Zealand’s industry for two special events
2/16/2018 US (GA): Priva joins growing list of sponsors of “AgLanta”
2/15/2018 IPM Dubai and WOP Dubai attract thousands of visitors
2/15/2018 Registration open for Horticulture Lighting Conference
2/14/2018 Commercial indoor farming in Africa and its cities
2/13/2018 Agribusiness opportunities in Tunisia
2/13/2018 Total recap: Fruit Logistica 2018
2/13/2018 US (NY): Year-round vegetables farm tours, workshop
2/12/2018 Photo report: Horticulture omnipresent at Fruit Logistica 2018
2/12/2018 South African delegation visits HortiContact
2/12/2018 NL: Koppert hosts international entomology training course
2/9/2018 Fruit Logistica comes to an end
2/9/2018 Yellow peppers turn out to be orange: grower takes shop to court
2/8/2018 Fruit Logistica on its way to 75,000 visitors
2/8/2018 US (MS): Greenhouse tomato short course
2/7/2018 Germany: Fruit Logistica gets underway
2/7/2018 Dutch chef cooks with tomatoes
2/7/2018 Prince of Wales to serve heirloom tomatoes
2/6/2018 Australia: Sundrop Farms forms backdrop for ModulAIR Platform
2/6/2018 High-tech ag industry gathers in Kenya