Announcements

Job offersmore »

Tweeting Growers

Top 5 - yesterday

  • No news has been published yesterday.

Top 5 - last week

Top 5 - last month

Exchange ratesmore »




Bacteria protect aphids from natural enemies

A recently published international study discovered a new role played by bacteria living in pea aphids: they suppress the defences of the plants the aphids feed on. As a result, fewer enemies are attracted to the plant's distress signals, thereby increasing the aphid's chance of survival. The joint study, carried out by Wageningen University & Research and the University of Oxford, was published in the leading scientific journal Nature Communications.

When a plant is threatened by aphids, it defends itself by releasing a blend of volatiles that attracts the insect's natural enemies, such as predatory wasps. The plant uses this so-called 'bodyguard recruitment' to defend itself against attacks.

The study in Nature Communications found that the pea aphid's bacterial symbionts increase the insect's chance of survival by manipulating the plant's phyto-hormonal responses. In other words: the bacteria suppress the plant's distress signal in some way. The study thereby revealed a new mechanism by which the bacteria – known as symbionts – help aphids. It also revealed the importance of studying the insect microbiome (intestinal flora) in order to understand the interaction between different species.

Environmentally friendly pest control
Aphids are among the most important pests for temperate crops, and understanding the relationship between aphids and their bacterial symbionts may assist in the challenge of designing more environmentally friendly pest control strategies. These strategies may include determining the prevalence of protective symbionts in aphid populations and selecting plant varieties which, once attacked by aphids, maximise the attraction to the natural enemies of aphids.

This study was a collaboration between the Laboratory of Entomology at Wageningen University and the Department of Zoology at the University of Oxford (UK) and was financed by the EU Marie Curie programme.

Source: Wageningen University & Research

Publication date: 12/12/2017

 


 

Other news in this sector:

7/13/2018 Effect of low-frequency electromagnetism on root-knot nematodes
7/13/2018 Growing healthier with insect netting
7/12/2018 The value of biorationals in pest resistance management
7/12/2018 US: Greenspire Global expands distribution network
7/12/2018 Australia: Pepper growers take disease management masterclass
7/10/2018 UK: £500,000 for further development of organic pesticides
7/10/2018 US: Cucurbits at risk for downy and powdery mildew
7/9/2018 Blight - Lessons for the future of pest management
7/9/2018 US (MS): Southern blight hitting state’s tomatoes hard
7/6/2018 UK: Tri-Component System for black vine weevil and western flower thrips
7/6/2018 "Small bee ‘pollen thieves’ are not effective bumblebee substitutes"
7/6/2018 US: Torac insecticide granted expanded label for vegetable crops
7/5/2018 Nigeria: NIHORT develops technology to fight tomato pest
7/5/2018 US (WA): Researchers combat costly parasitic worm
7/5/2018 US (MD): Bacterial wilt problems in cucurbits
7/5/2018 North America: Biopesticides Conference highlights importance of IPM
7/5/2018 BASF expands global insecticide portfolio
7/4/2018 Two new races of Bremia lactucae identified and nominated in Europe
7/4/2018 More expertise needed in greenhouse sector
7/3/2018 US (NJ): Cucurbit downy mildew confirmed in Salem County