Announcements

Job offersmore »



Tweeting Growers

Top 5 - yesterday

  • No news has been published yesterday.

Top 5 - last week

Top 5 - last month

Exchange ratesmore »




How thrips choose their partners

The bigger the male, the higher his chances to successfully mate – this applies, at least, to thrips, insects measuring only two to three millimetres in length that are hard to recognise with the naked eye. The larger males not only drive off their smaller rivals, they also have better immune systems and produce more sperm. This is a discovery that was made by biologists at Martin Luther University Halle-Wittenberg (MLU). Their study recently appeared in the international "Journal of Insect Behaviour".

"Larger males have better chances of procreating than their smaller rivals," says Dr Stephanie Krüger, the study’s lead author. The researcher works alongside Dr Gerald Moritz, a professor of biology from Halle who has been studying thrips for many years. Krüger has investigated a species of thrips called Echinothrips americanus which is only 1.3 millimetres in size. This species is a pest insect that came to Europe from the USA at the end of the 20th century and is now a common occupant of Germany’s greenhouses. These small insects, which belong to the order Thysanoptera, shouldn’t be underestimated as the damage they cause to the agriculture industry and the horticulture sector can run into the millions.


A plant with thrips. Photo: Stephanie Krüger

There are many reasons why the larger males have a higher reproduction success rate. "For one thing, strong males drive off their smaller rivals. Their size also allows them to more easily mount females when mating," says Krüger. Added to this is the fact that females from many different species of insect prefer larger males as they promise a higher probability of survival for the eggs and offspring. Furthermore, the animals produce more secretions, which females use as nutrients during egg production. There is even a benefit to male fertility: they produce more sperm.

Until recently little had been scientifically known about the reproductive biology of thrips. The biologists from Halle were able to refute, for example, the wide-spread hypothesis that so-called sternal glands impact mating success. The actual purpose of these glands, located on the insect’s abdomen, remains unclear. Krüger has a hypothesis, and further research should allow her to determine whether male thrips guard the pupae with the intention of being the first to mate with the hatched females. "We presume that the males mark the territory they are guarding," says Krüger. If they have a larger pore plate, and consequently more sternal glands, they have an advantage over other males by being able to demarcate their territory. The biologist would also like to analyse whether the females actively seek out their mates or whether the larger males are more successful in finding a copulation partner due to their higher levels of aggression.

The research division "Development Biology" at MLU, led by Professor Gerald Moritz, has been studying thrips for many years. More than 6,100 species belong to their order. These micro-insects, with their stinging and sucking mouthparts, have caused a great deal of resentment in the agriculture industry. They infest cut flowers and damage fruit and vegetables by boring into the plant cells and extracting cell sap. For instance, they have diminished harvest yields of strawberries in the USA and Germany. In addition, several species transmit major plant viruses. Thrips are also a nuisance in the living rooms of plant lovers throughout the country. Their sucking leaves behind an optically displeasing, silver-grey discoloration on indoor plants like the rubber plant and palms.

Source: Martin Luther University Halle-Wittenberg (Tom Leonhardt)

Publication date: 11/13/2017

 


 

Other news in this sector:

1/18/2018 "Fruit Fly Attractant the best luring substance to combat Drosophila suzukii"
1/17/2018 Germany: Plant protection for herbs in the winter
1/17/2018 Developments in copper fungicides
1/16/2018 Hungarian university discovers copper-resistant biopesticide
1/16/2018 Ghana: Tomatoes plagued by mysterious disease
1/15/2018 UGA Extension faculty present on pesticide safety in Vietnam
1/12/2018 Health Canada proposes some neonic restrictions
1/12/2018 Spain: Progress in research on plant protection hormone
1/12/2018 "Prevention is the best way to manage greenhouse weeds"
1/10/2018 "Biological products won’t replace conventional crop protection"
1/9/2018 Germany: Bayer inaugurates new greenhouse for insecticide research
1/8/2018 US: Mexican fruit fly quarantine in portion of San Diego County
1/8/2018 US: Agricultural Worker Protection Standard revised
1/8/2018 Guam: Funding secured to protect tomato plants
1/3/2018 US: Whiteflies threaten Georgia crops
1/2/2018 BioProtection Association expands global footprint, elects new president
12/22/2017 "UK needs ‘coherent’ long-term plan for IPM"
12/22/2017 "Greater biosecurity harmonisation will help protect nursery industry"
12/21/2017 UK: New plant protection product approved for use in record time
12/21/2017 US (CA): Medfly quarantine in portion of San Mateo County