Announcements

Job offersmore »

Tweeting Growers

Top 5 - yesterday

  • No news has been published yesterday.

Top 5 - last week

Top 5 - last month

Exchange ratesmore »




The impact of colored plastic films on strawberry cultivation

Researchers studied the influence of colored plastic films (red, yellow, green, blue, and white) on fruit quality, antioxidant capacity, and gene transcripts in greenhouse-grown strawberries. Fruits grown under white plastic film were used as the controls.

Results indicated that there was no difference in single fruit weight due to colored plastic films in the present study. The colored plastic films had significant effects on sugar and organic acid content. The content of total sugar (SUG) was increased by 10.39% and total organic acid (ACID) was decreased by 16.58% in fruit grown under blue plastic film compared with the controls.

Fruit grown under blue plastic film had significantly higher SUG content and lower ACID content than fruit subjected to yellow and green plastic films and had the highest SUG/ACID ratio of 11.46. Colored plastic films had significant effects on bioactive compound (anthocyanin, flavonoid, phenolic) content and antioxidant capacity.

The highest level of bioactive compound content was detected under red plastic film. The content of total phenolics, total flavonoids, and total anthocyanin (TAC) in fruits grown under red plastic film was respectively 23.10%, 25.37%, and 74.11% higher than that of the fruits grown under the control. The antioxidant capacities were highest in fruits grown under red plastic film.

Fruits grown under red and yellow films had higher sucrose phosphate synthase (SPS) and sucrose synthase (SS) activity than those fruit covered with green, blue, and white plastic films at whole fruit development stages. Acid invertase (AI) activity was high in fruit grown under green plastic film and declined during development. Blue plastic film had mainly increased the FaSPS and FaAI transcript at the green stage, and decreased the expression of FaSS.

It is proposed that colored plastic films can regulate the expression of genes involved in the flavonoid biosynthesis pathway, especially FaPAL, FaF3H, FaFGT, and FaMYB10, at half-red and red stages.

Access the full study at HortScience.

Publication date: 10/26/2017

 


 

Other news in this sector:

7/20/2018 India: Israeli technology helps grow tomatoes in off-season
7/20/2018 Outcry in Germany for granted GMO subsidies to South European growers
7/19/2018 How to achieve better hydroponic germination rates
7/19/2018 Corn salad: a small, niche market
7/19/2018 Protection of resources and environment in spinach production
7/19/2018 "Even if robots are replacing human hands, they can't take over everything"
7/19/2018 UAE: Sweet tomatoes grown with no soil and less water
7/13/2018 Algeria: Growing barley in the desert
7/12/2018 The future of farming in Africa
7/10/2018 India: Centre of Excellence for Vegetables grows without soil
7/9/2018 UK: Making use of brine wash for algae
7/6/2018 UK: Manipulating growth rates at the plant scale
7/6/2018 Systemic cultivation can boost results in Chinese wall greenhouses
7/3/2018 UK: "Long-term water plans needed as temperatures soar"
7/2/2018 "Partnerships of paramount importance for Chinese horticulture"
6/26/2018 "Automatic gutter system ready for world wide distribution"
6/26/2018 Scientific proof of dissolved CO2 foliar spray plant benefits on lettuce
6/26/2018 How a cultivation test works
6/25/2018 New climate control techniques for modern agriculture
6/25/2018 "Filling the gap between large TOV and medium TOV"