Announcements

Job Offers

"Tweeting Growers"

Top 5 -yesterday

Top 5 -last week

Top 5 -last month

"Strawberry yield and quality improved after CuO2 nanoparticle exposure"

A new finding written in the journal Science of The Total Environment involving CuO2 nanoparticles has shown an increase in the yield and quality of strawberries after exposure. Nanoparticles (NPs) have demonstrated a high potential for use as nanofertilizers in agriculture. CeO2 nanoparticles have recently been reported to improve crop growth and yield by advancing the flowering and fruit ripening phases of tomato plants. Proteomics-based technology, which is extremely sensitive, has the potential to investigate the molecular basis and provide a more comprehensive explanation for phenotypes. Proteomic analysis has been used to illustrate the effect of NPs on crop nutritive value or yield.

A shotgun proteomic findings show that CeO2 NPs could moderate the down-regulation of proteins that are involved in seed metabolic functions and nutrient storage, suggesting a reduction in seed quality, despite the fact that CeO2 NPs had not shown phyto-nanotoxicity. In the case of other NPs, gel-free proteomic studies indicate that key enhanced proteins involved in starch degradation, glycogenolysis, and the tricarboxylic acid cycle may be responsible for increased wheat yield following Cu NP exposure.

Strawberries are among the most prominent fruits in the world due to their great flavor, high concentration of health-promoting nutrient content, and high antioxidant capacity. After CeO2 NP exposure, a label-free quantification proteomic innovation was used to detect and measure the proteins that govern fruit quality, making it the first research to thoroughly evaluate the influence of CeO2 NP on fruit quality using proteomic analysis in an organic field.

Strawberry yield-related variables like total ripe fruit figures, ripe fruit figures per plant, average weight, and fruits per plant were measured after 90 days of exposure. Cumulative ripe fruit figures were increased by CeO2 NPs, with the highest fruit number at 20 mg/L. Enhanced pollen grain numbers, pollen grain germinating seeds rates, and pollen tube elongation may all play a role in increasing yield. Strawberry flower buds, on either hand, can distinguish the difference between stolons or flowering shoots, as well as the ability of axillary buds to establish stolons or flowering shoots is limited to one per plant. As a result, the transformation of stolon to flowering shoots would increase fruit production.

Read the complete article at www.azonano.com.


Publication date:



Receive the daily newsletter in your email for free | Click here


Other news in this sector:


Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber