Imagine being able to grow plants that could absorb even more CO2 from Earth’s atmosphere and thereby help solve the world's climate problems. Humans have selected, bred, and optimized plants to increase food production and ensure our survival for thousands of years.
In a new study published in the scientific journal PNAS, researchers from the University of Copenhagen’s Department of Plant and Environmental Sciences have just discovered that a group of proteins in plant leaf cells, called CURT1, plays a much more important role in photosynthesis than once thought.
"We have discovered that CURT1 proteins control a plant's development of green leaves already from the seed stage. Thus, the proteins have a major influence on how effectively photosynthesis is established," explains Associate Professor Mathias Pribil, the study’s lead author.
"Emerging from the soil is a critical moment for the plant, as it is struck by sunlight and rapidly needs to get photosynthesis going to survive. Here we can see that CURT1 proteins coordinate processes that set photosynthesis in motion and allow the plant to survive, something we didn’t know before," explains Mathias Pribil.
Photosynthesis takes place in chloroplasts, 0.005 mm long elliptical bodies in plant cells that are a kind of organ within the cells of a plant leaf. Within each chloroplast, a membrane harbors proteins and the other functions that make photosynthesis possible.
"CURT1 proteins control the shape of this membrane, making it easier for other proteins in a plant cell to move around and perform important tasks surrounding photosynthesis, depending on how the environment around the plant changes. This could be to repair light-harvesting protein complexes when the sunlight is intense or to turn up a chloroplast's ability to harvest light energy when sunlight is weak," explains Pribil.
Read the complete article at www.news.ku.dk.