Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Contribution of Piriformospora indica on improving the nutritional quality of tomatoes

Protected cultivation has a significant contribution in vegetable production. We investigated whether humic acid addition to soil and Piriformospora indica can improve the nutritional quality of greenhouse tomato. We conducted a pot experiment, in which the effects of P. indica inoculation, humic acid addition, and Cu spiking to soil (0, 120, 240, and 500 ppm Cu) were tested.

Humic acid addition to soil spiked with 500 ppm Cu decreased the Cu concentration in the fruits of plants inoculated with P. indica from 0.65 to 0.40 mg 100 g Fw−1, which is still above the maximum allowed limits of Cu in tomato by World Health Organization (WHO). The lycopene and ascorbic acid content of tomato fruits were consistently improved by humic acid addition and P. indica inoculation. The antioxidant enzymes’ activity changed in response to humic acid addition, Cu spiking to soil, and P. indica inoculation. With increasing Cu level up to 240 ppm, the activity of superoxide dismutase (SOD) and peroxidase (POD) increased significantly. H

However, with spiking more Cu to soil, the activity of antioxidant enzymes reduced and the MDA content increased significantly. Addition of humic acid to soil and/or presence of P. indica increased the activity of antioxidant enzymes when the soil spiked with 500 ppm Cu. This study indicated that addition of P. indica and humic acid to the soil can enhance the nutritional quality of greenhouse tomatoes by reduction of Cu toxicity as a common pollutant in the greenhouse media and increasing the antioxidant content of fruits.

Read the complete research at www.researchgate.net.

Baghaie, Amirhossein & Aghili, Forough. (2021). Contribution of Piriformospora indica on improving the nutritional quality of greenhouse tomato and its resistance against cu toxicity after humic acid addition to soil. Environmental Science and Pollution Research. 1-14. 10.1007/s11356-021-15599-3. 

Publication date: