Study on tomato leaf diseases classification based on leaf images

Tomato production can be greatly reduced due to various diseases, such as bacterial spot, early blight, and leaf mold. Rapid recognition and timely treatment of diseases can minimize tomato production loss. Nowadays, a large number of researchers (including different institutes, laboratories, and universities) have developed and examined various traditional machine learning (ML) and deep learning (DL) algorithms for plant disease classification.

However, through pass survey analysis, the team found that there are no studies comparing the classification performance of ML and DL for the tomato disease classification problem. The performance and outcomes of different traditional ML and DL (a subset of ML) methods may vary depending on the datasets used and the tasks to be solved. This study generally aimed to identify the most suitable ML/DL models for the PlantVillage tomato dataset and the tomato disease classification problem. For machine learning algorithm implementation, the team used different methods to extract disease features manually. In this study, the team extracted a total of 52 texture features using local binary pattern (LBP) and gray level co-occurrence matrix (GLCM) methods and 105 color features using color moment and color histogram methods. Among all the feature extraction methods, the COLOR+GLCM method obtained the best result.

By comparing the different methods, the team found that the metrics (accuracy, precision, recall, F1 score) of the tested deep learning networks (AlexNet, VGG16, ResNet34, EfficientNet-b0, and MobileNetV2) were all better than those of the measured machine learning algorithms (support vector machine (SVM), k-nearest neighbor (kNN), and random forest (RF)). Furthermore, the team found that, for the dataset and classification task, among the tested ML/DL algorithms, the ResNet34 network obtained the best results, with accuracy of 99.7%, precision of 99.6%, recall of 99.7%, and F1 score of 99.7%.

Read the complete research at www.researchgate.net.

Tan, Lijuan & Lu, Jinzhu & Jiang, Huanyu. (2021). Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods. AgriEngineering. 3. 542-558. 10.3390/agriengineering3030035. 


Publication date:



Receive the daily newsletter in your email for free | Click here


Other news in this sector:


Facebook Twitter Rss LinkedIn

© HortiDaily.com 2021

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber