Expert Markus Tauber on the Agri-Tec 4.0 research project

'To make Vertical Farming industrially viable, you need artificial intelligence'

Existing vertical farming systems are automated, but still require manual intervention. Artificial Intelligence (AI) is needed to make them industrially viable, says Markus Tauber, head of the Cloud and CPS Security Research Center and head of the Master's program in Cloud Computing Engineering at the University of Applied Sciences Burgenland. He is currently involved in the Agri-Tec 4.0 research project and wants to take vertical farming to the next level.

With the aid of Vertical Farming, one can grow vegetables anywhere in the world. The small experimental factory, which was developed especially for the research project, shows how this works: A 2.5 x 3 x 2.5 metre cube, which is double-walled and has light-proof insulation. No sun is needed inside the cube. Light and temperature conditions can be controlled. Because the cultivation is based on aeroponics, not even soil is needed - and only a fraction of the amount of water from conventional cultivation. Aeroponics means that the roots of the plants hang in the air and are sprayed with water. The water is mixed with nutrients and the plants grow much faster than in soil.

Artificial intelligence
The irrigation robot in the cubus is derived from industry partner PhytonIQ Technology. The young company develops the technologies of its systems itself and also offers them for sale. Co-founder Martin Parapatits reports on the worldwide trend to combine vertical farming and artificial intelligence: "Big players are investing, but there is no ready-made solution yet". Vegetable cultivation requires agile and flexible production structures that cannot be achieved through traditional automation. Tauber and his team contribute their expertise in sensors and sensor networking. They hope to use computer algorithms to ensure optimal plant growth. They also want to ensure data security.

Enhancing plant properties
The demands on the intelligent control of vertical farming are manifold: In addition to the already mentioned parameters of light, temperature, nutrients and irrigation, the wind must also be continuously coordinated. "Wind is a natural stress factor for plants. It causes the stem of the plant to strengthen and the plant to stand upright, explains Parapatits. "A similar effect can be observed in solar radiation: When a plant is in shade, it grows towards the sun as quickly as possible, either upwards or sideways. This property can also be used in vertical farming - by controlling it. Under the influence of wind ventilation or different wavelengths of light, plants can be kept small and bushy or grown tall and slender. At the same time, the air movement dries out the plants' surroundings. This reduces the risk of mould and encourages the plant to breathe."

Model: Human nervous system
He and his team focus on small control loops that function like nervous systems in the human body. As an example he cites the Fight and Flight Response (Walter Cannon, 1915). This enables the body to react to danger. When the stress hormone increases, more blood flows into the muscles than into the digestive system. As soon as the stress hormone drops, the blood flow is regulated again and the blood flows back into the digestive system. This effect can also be observed in plants, says Tauber: "There are parameters that affect the environment and require a reaction. If the plant is too thin, it needs more wind. In our cube."

Monitoring with image data
In humans, the nervous system is responsible for controlling the body's reactions. In the self-adapting system of the control loop, it is the MAPE-K architecture in which all actions due are based on five points: monitoring, analysis, planning and execution, and existing knowledge. "In the case of wind control, we monitor the development of the plant using the sensor and our knowledge. We use image data for this. We derive the information from the thickness and inclination of the stem. From a certain thickness and inclination, more wind is needed again," Tauber explains.

Open Source Project
Agri-Tec 4.0 is basic research on the subject of vertical farming. The research focuses on networked autonomous elements (control loops) and the extent to which these can be combined with other technologies - such as machine learning and neural networks. In cooperation with the AIT Austrian Institute of Technology, it is to be examined whether the safety criteria can be met when using MAPE-K. "Security and trust in data is important," emphasizes Tauber. The TU Vienna is contributing with its expertise in Internet of Things (IOT) infrastructure. The project will run for two years. The results will be published open source.

Aeroponics as the most water-efficient system
Industrial partner PhytonIQ Technology intends to use the results to integrate artificial intelligence into its industrial software. It will take another four years before the system is tested and marketable. The company produces wasabi and microgreens for clients from the catering and healthcare industry. The plant has a surface area of 1200 m2 and the beds run over three to five floors.

For Parapatits the aspect of water saving is central. Firstly because there are regions that are very dry and secondly because water is an increasingly scarce resource. Aeroponics is currently the most water-saving system. An effect that it increases even more with a recirculating system: the water enriched with nutrients remains in use for several weeks in a recirculating system. Only then is it changed. Parapatits: "We are already working on different solutions to be able to use the water even more efficiently." Since different plants have different requirements, hydroponics and fleece technology are also being used.

Source: Innovations Origins 


Publication date:



Receive the daily newsletter in your email for free | Click here


Other news in this sector:


© HortiDaily.com 2020

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber