Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato

The Nutrient Use Efficiency in intensive agriculture is lower than 50% for macronutrients. This feature results in unsustainable financial and environmental costs. Nanofertilizers are a promising application of nanotechnology in agriculture. The use of nanofertilizers in an efficient and safe manner calls for knowledge about the actual effects of nanoproducts on the plant metabolism and eventually on the carrier release kinetics and nutrient accumulation.

Hydroxyapatite (Ca10(PO4)6(OH)2) nanoparticles (nHA) have an interesting potential to be used as nanofertilizers. In a new study, the effects of different nHA solutions stabilized with carboxymethylcellulose (CMC) were evaluated on germination, seedling growth, and metabolism of Solanum lycopersicum L., used as model species.

The study authors' observations showed that the percentage germination of S. lycopersicum is not influenced by increasing concentrations of nHa, while root elongation is strongly stimulated. Tomato plants grown in hydroponics in the presence of nHA have not suffered phytotoxic effects. They conclude that nHA had nontoxic effects on our model plant and therefore it could be used both as a P supplier and carrier of other elements and molecules.

Access the full study at Agronomy.

Publication date: