Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

China gets serious about space farming

China just wrapped up its longest crewed space mission and brought back a pair of the country's astronauts after a month-long stint aboard the recently launched Tiangong-2 space station. The mission was a way to test out the stations equipment and mechanisms, but also set up the first part of a slew of different scientific experiments. This payload included germinated seeds of thale cress — a flowering plant used extensively in space-based botanical research that could help usher in a whole new world of space-based agriculture.

With one of the smallest genomes among all plant species, thale cress is very easy to manage and modify, making it a flexible tool for studying plants in space and microgravity. It’s got a short life span (50 days for germination to maturation of seeds), so experiments can run fairly quickly.

And that’s critical — if deep space travel is going to open up to the rest of the world and become a normalized part of humanity’s future, we’ll need to perfect how to grow our own food up in space.

Already, researchers from the University of Wisconsin-Madison, the University of Florida, and others have developed experiments to run aboard the International Space Station, and understand how thale cress grows and how its gene expression changes in a microgravity environment or under lower oxygen levels. The primary goal among most current thale cress space research is to better understand how reproduction and seed production occurs. The hope is to take those results and apply them to augmenting food—producing crops to optimize them for vegetable growth in space.

The Tiangong-2 experiment seems to have gone well so far — with some thale cress plants already blooming during their stay in space. Samples were brought back to Earth with the return of the two astronauts, and those samples and their seeds will be studied carefully in the next several weeks.

Read more at Inverse
Publication date: