Job offersmore »

Tweeting Growers

Top 5 - yesterday

Top 5 - last week

Top 5 - last month

Exchange ratesmore »

Phosphate detection in hydroponics using molecularly imprinted sensors

In a new study from the University of Manchester, an interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool.

The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N-allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate and trimethyl phosphate. A cross-interference study between phosphate, nitrate and sulfate was carried out for the MIP materials using an inductance, capacitance and resistance (LCR) meter. Capacitance measurements were taken applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz.

The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a combination of a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP.

Access the full study here.

Publication date: 1/10/2018



Other news in this sector:

3/15/2018 Keeping plant-cell motors on track
3/15/2018 Italy: Modern producers employ Mater-Bi films
3/14/2018 UV light provides novel method to improve crop performance and yield
3/14/2018 Vegetable specialists now deliver to peopleís homes using Yape
3/14/2018 Opening Hazera Crucifer R&D Station
3/13/2018 USDA invests in $2.6 million in exploratory research
3/9/2018 New expanded Soil Moisture Measurement Catalogue
3/9/2018 Internet of Things cultivation boosts greenhouse horticulture
3/9/2018 India: Scientists unravel mechanism of stress tolerance in tomato
3/9/2018 Advanced agrotextiles support berry production growth
3/9/2018 Israeli technology increases tomato production in India
3/8/2018 Soon it will be impossible to steal from self-serve checkouts
3/8/2018 UK: The search is on for new innovation in agritech
2/28/2018 NL: New lightweight and insulating roof system for water tanks
2/28/2018 "Greenhouse 'conveyor belt' could advance food production"
2/26/2018 Self-driving lorries hitting the road
2/26/2018 Vietnam: HCMC to pay interest for hi-tech farms
2/23/2018 The importance of reliable and independent measurements
2/23/2018 US (VT): Making greenhouse operations, farms more energy efficient
2/23/2018 Momentum-based air flow: Better climate and growth