Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Simulated seawater flooding reduces the growth of ten vegetables

Excessive salinity in soil and irrigation water in combination with waterlogging in coastal regions can significantly reduce the productivity of many agricultural crops. To evaluate the plant growth responses to simulated seawater (SSW) flooding, seedlings of 10 vegetables (broccoli, chinese cabbage, chinese greens, cucumber, eggplant, kale, radish, ‘Red Crunchy’ radish, spinach, and tomato) were flooded with SSW at electrical conductivity (EC) of 44.0 ± 1.3 dS·m−1 or tap water at EC of 0.8 ± 0.1 dS·m−1 for 24 hours and grown subsequently for 2 weeks in a greenhouse. 

Chinese greens and cucumber plants died shortly after flooding with SSW, whereas other vegetables exhibited various degrees of visible salt damage. Chinese cabbage suffered the strongest reduction, whereas spinach, tomato, and eggplant exhibited the least decrease in dry weight (DW) due to SSW flooding in comparison with their perspective control.

Publication date: